Practice	Tests Set	15 – Paper	2H-3H mark	scheme, p	performance	data and	suggested	grade boundaries
								J

Q Working Answer Mark Notes

1	for 0.08 × 1200 oe (= 96)	OR		3	M1	for 0.08 × 1200 oe	OR M2 for 1200 ×
	or 1.08 × 1200 oe (= 1296)					(= 96)	1.08 ³
						or 1.08 × 1200 oe	or 1200 × 1.08 ⁴
		1200 ×				(= 1296)	(= 1632.59)
	1.08 × "1296" (= 1399.68) oe	1.08^{3}			M1	for completing method	
	$1.08 \times "1399.68" (= 1511.6544)$ oe					to find total amount in	(M1 for 1200×1.08^2
						the account	(= 1399.68))
			1512		A1	accept 1511 – 1512	
						SC: if no other marks ga	ined award M1 for
						0.24×1200 oe or 288 o	r 1488
						accept $(1 + 0.08)$ as equi	valent to 1.08
						throughout	
							Total 3 marks

2	Use of 2 hrs 42 mins = 2.7 hrs or 162 mins		4	B1	
	e.g. $90 \times 2.7 \ (= 243)$ or e.g. $\frac{90}{60} \times 162 \ (= 243)$ or e.g. $\frac{S}{90} = \frac{2.7}{3}$			M1	for use of $D = S \times T$ (accept use of their time e.g. 90×2.42) or for setting up an equation using proportion
	e.g. "243" ÷ 3 or $(S =)$ 90× $\frac{2.7}{3}$			M1	(dep on M1) for their $D \div 3$ or for solving their equation
		81		A1	
					Total 4 marks

3	e.g. $\frac{3}{"10"} \times 80 (= 24)$ or $\frac{2}{"10"} \times 80 (= 16)$ or $\frac{5}{"10"} \times 80 (= 40)$		5	M2	for a complete method to find the number of chocolate cakes or lemon cakes or fruit cakes "10" comes from $3 + 2 + 5$
				(M1	for correct use of the ratio e.g. $80 \div "10" (= 8)$)
	e.g. "16" × $\frac{3}{4}$ × 1.7(0) (= 20.4(0)) or "40" × $\frac{7}{8}$ × 2.4(0) (= 84)			M1	for a method to find the profit for lemon cakes or fruit cakes
	e.g. "24" × 2 (= 48) and "16" × $\frac{3}{4}$ × 1.7(0) (= 20.4(0))			M1	for a method to find the profit for all 3 cakes
	and "40" × $\frac{7}{8}$ × 2.4(0) (= 84)				
		152.4(0)		A1	
					Total 5 marks

Answer

Mark

Notes

Practice Tests Set 15 – Paper 2H-3H mark scheme, performance data and suggested grade boundaries

Working

Q

4	$8265 - 7500 (= 765)$ or $\frac{8265}{7500} (= 1.102)$		3	M1 8265 – 7500 could be embedded in another calculation.
	$\frac{"765"}{7500}$ ×100 oe or "1.102" × 100 – 100 oe			M1
		10.2		A1 oe

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

5	$\pi \times 2.5^2 \times 15$ (= 93.75 π = 294.5243)		5	M1	for using the formula for volume of cylinder
	$21.5 = \frac{m}{"294.5243"}$			M1	for using $d = \frac{m}{v}$ with <i>their</i> intended volume v
	$(m =) 21.5 \times 294.5243' (= 6332.272692)$			M1	for rearranging for $m = d \times v$
	'6332.27269' ÷ 1000 × 5 (=31.661) or '6332.27269' ÷ 6 ÷ 1000 (= 1.055) or '6332.27269'× 5 and 30 × 1000 (=30 000) or 30 ÷ ('6332.27269' ÷ 1000) (= 4.7376)			M1	for a correct calculation that would enable a conclusion to be made based on mass
		No and correct comparable figure(s)		A1	for No oe and (31.6 to 31.7 or 1.05 to 1.06 or 4.70 to 4.74) seen
					Total 5 marks

6	$15 \times 24 (= 360)$ or $25 \times 18 (= 450)$		3	M1	may be implied by 810 seen
	$\frac{'360'+'450'}{40} (=\frac{810}{40})$			M1	dep on M1
		20.25 oe		A1	for 20.25 accept 20.3 (allow 20 from correct working)
					Total 3 marks

Q	Working	Answer	Mark	Notes

7	$\cos 35^{\circ} = \frac{15}{AB} \text{ or } \sin 55^{\circ} = \frac{15}{AB}$ or $\frac{15}{\sin 55} = \frac{JB}{\sin 35}$ and $(AB^2 =) ("10.50")^2 + 15^2$ or $\tan 25^{\circ} = \frac{JB}{\sin 35}$ and $(AB^2 =) ("10.50")^2 + 15^2$		5	M1 oe eg x for AB
	$(AB =) \frac{15}{\cos 35^{\circ}} (=18.3)$			M1
	or $(AB =) \frac{15}{\sin 55^{\circ}} (=18.3)$ or $(AB =) \sqrt{("10.50")^2 + 15^2}$			
	or $(AB =)\sqrt{(15\tan 35)^2 + 15^2}$			
	'18.3' × 4 (= 73.2)			M1 dep 1st M1
	80 - '18.3' × 4 or 80 - '73.2'			M1 dep 1st M1
		6.75		A1 accept 6.75 – 6.8
				Total 5 marks

Q Working Answer Mark Notes	
-----------------------------	--

8	(a)		$30 < t \le 40$	1	B1	
	(b)	e.g. 5 × 4 + 15 × 10 + 25 × 15 + 35 × 25 + 45 × 6 (= 1690) or 20 + 150 + 375 + 875 + 270 (= 1690)		4	M2	For correct products using midpoints (allowing one error) with intention to add.
						If not M2 then award M1 for products using frequency and a consistent value within the range (allowing one error) with intention to add or correct products using midpoint without addition.
		"1690" ÷ 60			M1	dep on M1
			28.2		A1	accept 28.1 – 28.2
						Total 5 marks

9	$y = \frac{7-5x}{2}$ or $y = \frac{7}{2} - \frac{5}{2}x$ or $y = 3.5 - 2.5x$ or 2y = 7 - 5x oe		2	M1	for making y or 2y the subject Allow $y = -\frac{5}{2}x + c$ oe
		-2.5		A1	for $-\frac{5}{2}$ or -2.5
					Total 3 marks

Q Working Answer Mark Notes	WorkingAnswerMarkNotes
-----------------------------	------------------------

10	$4.3^2 + 6.4^2$ or 59.45		4	M1	for squaring and adding
	$\sqrt{4.3^2 + 6.4^2}$ or $\sqrt{59.45}$			M1	dep 1st M1 for square rooting
	or 7.71(038) or 7.7				
	e.g ('7.71' + 4.3 + 6.4) × 22 or '18.4' × 22 (=404.8) or ('8' + 4.3 + 6.4) × 22 or '18.7' × 22 or '19' × 22 or '20' × 22			M1	dep M2 for a non-rounded perimeter \times 22 or 19 \times 22 accept 20 \times 22 oe
		\$418		A1	cao
					Total 4 marks

11	e.g. 1.5 × 1.5 (= 2.25 oe)		3	M1	for calculating the area of the square, may be seen embedded within a calculation
	e.g. 34.8 × "2.25"			M1	for a complete method to find the force
		78.3		A1	oe
					Total 3 marks

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

12		3	M1	for one of - 5 numbers with a median of 8 - 5 numbers with a mode of 5 - 5 numbers with a range of 10 - 5 numbers with a sum of 45
			M1	for two of - 5 numbers with a median of 8 - 5 numbers with a mode of 5 - 5 numbers with a range of 10 - 5 numbers with a sum of 45
	5, 5, 8, 12, 15		A1	Note: The numbers can be in any order SC If no marks awarded, give B1 for 8 in the middle cell, not contradicted.
				Total 3 marks

13	e.g. $31.5(0) \div (1 - 0.3)$		3	M2	for a complete method
					e.g. $31.5(0) \div (1 - 0.3)$
				(M1)	for $31.5(0) \div (100 - 30) (= 0.45)$
					or e.g. $(1 - 0.3)x = 31.5(0)$
		45		A1	
					Total 3 marks

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

14 (a)	35 37 38 39 41 42 43 44 45 47 47		3	M1	Ordering values (allow 1 error) error may include missing a value May be implied by correct values for LQ and UQ.
				M1	LQ = 38 and $UQ = 45$ identified
		7		A1	
(b)		January and reason using IQR	1	B1	ft from part (a) January as the IQR is lower oe ignore irrelevant statements about the median if given in addition to correct statements about IQR.
					Total 4 marks

15	$\pi \times 12^2 \times \frac{AOC}{360} (=100)$		4	M1	oe for setting up a correct expression for the area of the sector (or equation)
	$(AOC =)\frac{100 \times 360}{\pi \times 12^2} \left(=\frac{250}{\pi}\right)$			M1	for correctly rearranging for AOC
	(Angle <i>ABC</i> =) "79.57747" ÷ 2 (= 39.7887 or $\frac{125}{\pi}$)			M1	ft dep 1 st M1 and ' <i>x</i> ' less than 360 for dividing their ' <i>AOC</i> ' by 2
		39.8		A1	for awrt 39.8 accept $\frac{125}{\pi}$
					Total 4 marks

Q Working Answer Mark Notes

16	e.g. $a = (-3 + 47) \div 2 (= 22)$ or $\frac{11+b}{2} = -19 \ (b = -38 - 11 = -49)$ or method to add 25 to -3 or method to subtract 25 from 47 or method to subtract 30 from -19 or method to subtract 60 from 11		2	M1	for a correct method to find either coordinate or one coordinate correct. Look for correct method on their diagram, if used.
		$a = 22, \ b = -49$		A1	both correct
					Total 2 marks

Q Working	Answer Ma	rk Notes
-----------	-----------	----------

17	$14 \div 10 (= 1.4) \text{ or}$ at least two of $(3.2 \times 15 (=48) \text{ or } 3.6 \times 5 (=18) \text{ or}$ $0.6 \times 10 (=6) \text{ or } 0.2 \times 20 (=4) \text{ or}$ at least two of $(140, 480, 180, 60, 40) \text{ or}$ $\frac{14}{140} = \left(\frac{1}{10}\right)$		3	M1	for any one correct frequency density or $1 \text{ cm}^2 = 2.5$ or association of area with frequency eg one small square = 0.1 (on vertical axis)
	$ \begin{array}{r} 14+3.2 \times 15+3.6 \times 5+0.6 \times 10+0.2 \times 20 \text{ or} \\ 14+48+18+6+4 \text{ or} \\ (140+480+180+60+40) \times \frac{1}{10} \text{ or} \\ 900 \times \frac{1}{10} \end{array} $			M1	for any correct method Allow one error in their total (error may include missing a total for a bar)
		90		A1	answer from correct working
					Total 3 marks

Practice T	ests Set 1	5 – Paper 2H-3H	mark scheme,	performance	data and	suggested	grade boundaries
			,				•

Q Working	Answer	Mark	Notes
-----------	--------	------	-------

18	Ext angle of octagon = $360 \div 8$ (= 45)		6	M1	for method to find the size of one exterior or one
	or Int angle of octagon $(8 - 2) \times 180 \div 8$ oe (= 135)				interior angle of a regular octagon
	e.g. $10 + 2 \times 10 \times \sin 45$ (= $10 + 10\sqrt{2}$ or 24.1)			M1	method to find HE or AD
	10sin112.5				22.5 comes from (180 – "135") ÷ 2
	or e.g. $\frac{1}{\sin 22.5}$ (= 24.1)				112.5 comes from "135" – "22.5"
	e.g. $10 \times (``10+10\sqrt{2}") (= 100 + 100\sqrt{2} \text{ or } 241.4)$			M1	area ADEH
	or 10 × "24.1" (= 241.4)				
	e.g. $10 \times \sin 45^\circ$ (=5 $\sqrt{2}$ or 7.07)			M1	finds perpendicular height of triangle ACD (may be
	or e.g. $\sqrt{10^2 + 10^2 - 2 \times 10 \times 10 \times \cos^{11}35^{11}}$ (= 18.4)				found before, but must realise this is also height of
	10 sin"135"				triangle) or finds the length of AC
	or $\frac{1}{\sin 22.5}$ (= 18.4)				22.5 comes from $(180 - 135^{\circ}) \div 2$
	e.g. 0.5 × "24.1" × "7.07" (= 85.3)			M1	finds the area of triangle ACD
	or 0.5×10×"18.4"×sin112.5(= 85.3)				112.5 comes from "135" – "22.5"
		327		A1	accept 326 – 327
	Alternative (splitting octagon into triangles and				
	subtracting trapezium and triangle)				
	Ext angle of octagon = $360 \div 8 (= 45)$		6	M1	for method to find the size of one exterior or one
	or Int angle of octagon $(8 - 2) \times 180 \div 8$ oe (= 135)				interior angle of a regular octagon or method to
	or one of 8 angles at centre = $360 \div 8 (= 45)$				find one angle at centre of octagon when split into
					8 equal triangles
	e.g. $0.5 \times 10 \times 5 \times \tan 67.5 \ (= 60.35)$			M1	Area of one triangle (one-eighth of octagon) or
	$(10\sin 67.5)^2$				octagon
	or $0.5 \times \left(\frac{1}{\sin 45}\right) \times \sin 45 (= 60.35)$				
	or Octagon = 8×60.35 (= 482.8)				
	e.g. $10 + 2 \times 10 \times \sin 45^{\circ} (= 10 + 10\sqrt{2} = 24.14)$			M1	Method to find <i>HE</i>
	$0.5 \times (10 + 10 + 10\sqrt{2}) \times 5\sqrt{2} (=120.71)$			M1	Method to find area of trapezium HEGF
	$0.5 \times 10 \times 10 \times \sin 135^{\circ} (= 35.35)$			M1	Method to find area of triangle ABC

Q Working	Answer	Mark	Notes
-----------	--------	------	-------

19	8.35 or 7.25 or 6.15 or 5.25		3	B1	
	(8.35×7.25) – (6.15×5.25)			M1	Allow $UB_{AD} \times UB_{DC} - LB_{EH} \times LB_{HG}$ where $8.3 < UB_{AD} \le 8.35, 7.2 < UB_{DC} \le 7.25$ $6.15 < LB_{EH} < 6.2, 5.25 < LB_{HG} < 5.3$
		28.25		A1	oe, dep on M1
					Total 3 marks

20	$\left(\frac{-1+5}{2},\frac{6-4}{2}\right)$ or $\left(\frac{4}{2},\frac{2}{2}\right)$ or $(2,1)$		6	M1	for finding midpoint
	$\frac{-4-6}{51}$ or $\frac{64}{-1-5}$ or $-\frac{10}{6}$ or $-\frac{5}{3}$			M1	indep for finding the gradient of PQ
	$\frac{-1}{-\frac{10}{6}} \text{or} \frac{6}{10} \text{or} \frac{-1}{-\frac{5}{3}} \text{or} \frac{3}{5} \text{or} 0.6$			M1	for finding the perpendicular gradient to <i>PQ</i> (ft their stated gradient)
	$1 = \frac{3}{5}(2) + c \text{ or } c = -\frac{1}{5} \text{ or } c = -\frac{2}{10} \text{ or}$ c = -0.2			M1	dep on 1st and 3rd M1 for substituting '(2, 1)' into $y = '\frac{3}{5}'x + c$ or find the value of c oe eg $y - '1' = '\frac{3}{5}'(x - '2')$
	$y = \frac{3}{5}x - \frac{1}{5}$ or $y = 0.6x - 0.2$ or $5y = 3x - 1$			A1	for a correct equation in any form
		3x - 5y - 1 = 0		A1	for $3x-5y-1=0$ or 5y-3x+1=0 or 6x-10y-2=0 oe accept in the form $ax+by = -c$ eg $3x-5y = 1$ or $5y-3x = -1$ oe
					Total 6 marks

Answer

Mark

Notes

Practice Tests Set 15 – Paper 2H-3H mark scheme, performance data and suggested grade boundaries

Working

Q

Q	Working	Answer	Mark	Notes
21 e.g	$\frac{3}{x+7} \times \frac{2}{x+6} + \frac{4}{x+7} \times \frac{3}{x+6} + \frac{x}{x+7} \times \frac{x-1}{x+6} (= \frac{3}{8})$		4	M2 for all correct products and intention to add
e.g	$\frac{3}{N} \times \frac{2}{N-1} + \frac{4}{N} \times \frac{3}{N-1} + \frac{N-7}{N} \times \frac{N-8}{N-1} (=\frac{3}{8}) \text{ oe}$			(M1 for one correct product)
$5x^2 - $ or $5N^2 - $	47x + 18 = 0 oe $(x = 9)- 117N + 592 = 0$			M1 Correct quadratic equation
		16		A1 dep on M3
				Total 4 marks

	Q	Working	Ī			Answer		Mark		No	tes	
		Mean	Max	Mean								
Qn	Skill tested	score	score	%	ALL	9	8	7	6	5	4	3
1	Percentages	2.59	3	86	2.59	2.92	2.83	2.75	2.53	1.96	1.86	0.33
2	Measures	3.29	4	82	3.29	3.90	3.87	3.61	3.17	1.83	1.29	0.56
3	Ratio and proportion	4.00	5	80	4.00	4.85	4.77	4.20	3.23	2.96	1.18	0.22
4	Percentages	2.35	3	78	2.35	2.77	2.71	2.46	2.00	1.63	1.36	0.44
5	Measures	3.59	5	72	3.59	4.84	4.42	3.98	2.70	1.06	0.64	0.11
6	Statistical measures	2.17	3	72	2.17	2.88	2.61	2.38	1.47	1.12	0.25	0.00
7	Trigonometry	3.58	5	72	3.58	4.85	4.46	3.92	2.43	1.39	0.25	0.00
8	Statistical measures	3.82	5	76	3.82	4.90	4.55	3.63	3.59	2.41	0.65	0.00
9	Algebraic manipulation	1.36	2	68	1.36	1.97	1.77	1.45	0.66	0.37	0.04	0.00
10	Trigonometry	2.66	4	67	2.66	3.37	2.85	2.84	2.57	1.73	0.46	0.56
11	Measures	2.03	3	68	2.03	2.74	2.56	2.08	1.55	0.87	0.25	0.00
12	Probability	2.04	3	68	2.04	2.82	2.40	2.04	1.28	1.04	0.54	0.22
13	Percentages	2.04	3	68	2.04	2.86	2.54	1.90	1.40	0.87	0.43	0.00
14	Statistical measures	2.28	4	57	2.28	3.47	2.72	1.99	1.13	0.90	0.39	0.33
15	Mensuration of 2D shapes	2.24	4	56	2.24	3.84	2.98	1.80	0.49	0.20	0.00	0.00
16	Graphs	1.14	2	57	1.14	1.82	1.52	0.88	0.57	0.23	0.07	0.00
17	Graphical representation of data	a 1.58	3	53	1.58	2.59	2.01	1.30	0.64	0.25	0.04	0.00
18	Polygons	2.78	6	46	2.78	5.21	3.23	1.96	0.53	0.15	0.04	0.00
19	Degree of accuracy	1.49	3	50	1.49	2.75	1.82	0.95	0.30	0.17	0.04	0.00
20	Linear equations	2.13	6	36	2.13	4.38	2.05	0.99	0.51	0.24	0.07	0.11
21	Probability	1.37	4	34	1.37	3.13	1.25	0.35	0.11	0.00	0.00	0.00
	-	50.53	80	63	50.53	72.86	59.92	47.46	32.86	21.38	9.85	2.88

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	66	54	40	27	16	8	2